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Context

• Complex industrial systems subjected to corrective maintenances (CM,
repair), carried out after a failure.

• Maintenance are imperfect. Virtual age models are employed to
characterize the general wear-out of the systems.
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Motivations

• Adjusting an optimal preventive maintenance policy (periodic or dynamic)
is rarely addressed in the literature considering imperfect maintenance
only.

• The systems are not necessarily new at the beginning of the observations.

Second-hand unit.
Previous maintenances times are not recorded, observations
are missing.
Consistency of the observations (new maintenance policy,
systems after a burn-in period)

−→ To develop theoretical properties of a classical virtual age model.

→ To develop inference procedures when the initial age of the system is
unknown.

→ To present an optimal preventive maintenance strategy.
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Modelling the maintenance process
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• Failure times: {Ti}i≥1
• Inter-failure times: Xi = Ti − Ti−1, i ≥ 1

• Counting failure process: {Nt}t≥0, Nt = number of failures occurred at
time t

• Durations of repair are not taken into account.

• Two failures cannot occur at the same time. 7 / 37
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Stochastic modelling

−→ Considering Ht− as the history of the failure process up to time t, the
failure intensity λt is de�ned as:

λt = lim
dt→0

1

dt
P(Nt+dt − Nt− = 1|Ht−)

−→ For a self-excited point process : Ht− = σ ({Ns}0≤s<t) and λt
completely de�nes the failure process.

−→ Before the �rst failure, the failure intensity is a deterministic and
continuous function of time λ(t), called initial intensity , the failure rate of T1.

Considering industrial or software systems, a Weibull distribution is frequently
used.

λ(t) = αβtβ−1 , α > 0 , β > 0

8 / 37



Context Modelling WARA∞ Inference Optimization Conclusion

Classical models

Minimal Repair or As Bad As Old model (ABAO)

• Each maintenance leaves the system in the same state as it was before
failure.

• The failure process is a Non Homogeneous Poisson Process (NHPP).

λt = λ(t)

Perfect repair or As Good As New model (AGAN)

• Each maintenance perfectly repairs the system and leaves it as if it were
new.

• The failure process is a Renewal Process (RP).

λt = λ(t − TN
t−

)

Reality is between the case ABAO and AGAN

9 / 37



Context Modelling WARA∞ Inference Optimization Conclusion

Virtual age models

After the ith repair, the system performs as a new one having survived until Ai .

∀i ≥ 0, ∀t ≥ 0P(Xi+1 > t|X1, ..Xi ,Ai ) = P(Y > Ai + t|Y > Ai ) =
S(Ai + t)

S(Ai )

where Y has the same distribution as X1.

λt = λ(t − TN
t−

+ AN
t−

)

The Ai are called the e�ective ages. A0 = 0.

• ABAO : Ai = Ti

• AGAN : Ai = 0

• The Brown-Proschan model: repairs are either perfect (AGAN) with a
probability ρ, or minimal (ABAO) with a probability 1-ρ.

• The Arithmetic Reduction of Age model with memory 1 (ARA1):

Ai = (1− ρ)Ti

−→ A virtual age model is characterized by the initial intensity and by the
evolution of the e�ective ages.
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Failure intensities of virtual age models

Figure: BP model and a
Weibull initial intensity
(α = 0.001, β = 3, ρ = 0.5)
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Figure: ARA1 model and a
Weibull initial intensity
(α = 0.001, β = 3, ρ = 0.5)

−→ ρ ∈ [0, 1] describes the maintenance e�ciency.

−→ Exponential distributions are not adapted as initial intensities (no ageing).
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The ARA∞ assumption

−→ Arithmetic Reduction of Age model with in�nite memory.

−→ Brown-Mahoney-Sivazlian model (1983), particular Kijima type II model
(1988), Doyen and Gaudoin (2004).

Assumption: The age of a system after maintenance is proportional to its age
just before maintenance.

Ai = (1− ρ)(Ai−1 + Xi )

Ai = (1− ρ)iA0 +
i∑

j=1

(1− ρ)i+1−jXj

−→ Existence of a potential stationary regime of the process (Last and Szekli
(1998)).

12 / 37



Context Modelling WARA∞ Inference Optimization Conclusion

The Weibull-ARA∞ model

1 Context

2 Modelling the maintenance process

3 The Weibull-ARA∞ model

4 Inference on the WARA∞ model on an observation window

5 Optimal preventive maintenance strategy

6 Conclusion

13 / 37



Context Modelling WARA∞ Inference Optimization Conclusion

De�nition and simulation

−→ We consider a Weibull initial intensity λ(t) = αβtβ−1 and the ARA∞
assumption.

−→ The corresponding model is denoted Weibull-ARA∞ model or WARA∞
model.

Simulation of e�ective ages under ARA∞ assumption

Ai+1 = (1− ρ)Λ−1 (Λ(Ai ) + ξi+1)

where Λ is the cumulative initial intensity and Λ−1 its inverse, and where ξi+1 is
an exponential r.v. E(1) independent of {ξj}j=1..i

Λ(t) = αtβ considering a Weibull initial intensity.
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E�ective ages for the WARA∞ model

Proposition 1: General expression of An

An = (1− ρ)α−
1

β

(
n∑

i=1

(1− ρ)β(n−i)ξi

) 1

β

with {ξj}j=1..n sample of exponential distribution of parameter 1.

−→ Proof by induction.

−→ A series of exponential distributions with di�erent parameters follow an
hypoexponential distribution.

Notation q = (1− ρ)β

Notation q-Pochhammer series:

(x , x)k =
k∏

i=1

(1− x
i ) , x ∈ R , k ∈ N

15 / 37



Context Modelling WARA∞ Inference Optimization Conclusion

E�ective age distributions for the WARA∞
model

Proposition 2: Survival function of An

RAn (t) =
n∑

k=1

1

(q, q)n−k( 1
q
, 1
q

)k−1
e
−αtβ

qk

−→ � Hypo-Weibull � distribution.

−→ Given the e�ective An, the distribution of the next inter-failure time can be
determined.

Proposition 3: (Marginal) Survival function of Xn+1

RXn+1(t) =
n∑

k=1

αβ

qk(q, q)n−k( 1
q
, 1
q

)k−1

∫ ∞
0

x
β−1

e
−α(x+t)β+α(1−q−k )xβ

dx
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E�ective age distributions for the WARA∞
model

Proposition 4: Limiting survival distribution of An

RA∞(t) =
∞∑
k=1

1

(q, q)∞( 1
q
, 1
q

)k−1
e
−αtβ

qk

−→ Explicit expression of RX∞ .

Proposition 5: Expected value of the age

E [An] = α−1/βΓ(
1

β
+ 1)

n∑
k=1

q
k
β

(q, q)n−k( 1
q
, 1
q

)k−1

−→ Derive E [Xn+1],E [A∞],E [X∞]

−→ Derive the distribution of the age of the system just before the failure and
its expected value in the transient and steady regime: A−n ,E [A−n ],A−∞,E [A−∞].
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The actual observations

−→ The process is recorded on an obervation window [s, s + t] and no
information on the failure process is available prior to s.

−→ No model associated to imperfect maintenance on an observation window
has been developed.

−→ Under the ARA∞ assumption, the only necessary information to derive the
likelihood function is the initial virtual age a0.

Ls,t,a0(x1, . . . , xn) =
n∏

i=1

λ(ai−1 + xi )× exp(−
n+1∑
i=1

[Λ(ai−1 + xi )− Λ(ai−1)])

with ai = (1− ρ)ia0 +
∑i

j=1(1− ρ)i+1−jxj 19 / 37
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Choice of initial age

−→ In the literature, the initial age a0 is assumed to be 0 (new system).

−→ This assumption is relatively valid for a large dataset (renewal aspects of
the WARA∞ model).

−→ For a small dataset, the actual ageing of the system should be taken into
account.
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Steady regime assumption

Figure: Survival functions of An with (α = 1, β = 2, ρ = 0.2)

−→ If it is likely that few maintenances have occurred, it is realistic to assume
that the system is already in its stationary state.

−→ The �rst e�ective age is assumed to follow the distribution of A∞.
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Likelihood function

Proposition 6: Likelihood function under steady regime

L
∞(t1, t2, ..., tn, t) =

= −
∫ ∞
(1−ρ)t1

n∏
i=1

λ(ai−1 + xi ) exp

(
−

n+1∑
i=1

Λ(ai−1 + xi )− Λ(ai−1)

)
dRA∞(h)

with ai = (1− ρ)ih +
∑i

j=1(1− ρ)i+1−jxj .

−→ No explicit expression of the ML estimators.
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Simulations

Con�guration (Example)

• α = 1, β = 4.5, ρ = 0.2, n ∈ {10, 20, 30, 50}.
• The failure times (t1, ...tn) ∈ [s, s + t] are generated so that there are an

average of 100 failures before s.

Objective: Assess the surplus value of the new model

• First model (Simulated): Assume that the system is in steady regime.

• Second model: Assume that the system is As Good As New at the
beginning of the observations.

−→ Comparison criteria: Bias and MSE.
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Results

10 20 30 40 50

1
2

3
4

5
6

Observations

Bi
as

10 20 30 40 50

5
10

15
20

25
30

Observations

MS
E

Simulation result ofα

10 20 30 40 50

−2
.0

−1
.5

−1
.0

−0
.5

Observations

Bi
as

 

10 20 30 40 50

2
3

4
5

6
7

Observations

MS
E

Simulation result ofβ

Figure: Bias and MSE with A0 ∼ A∞ (plain) and A0 = 0 (dashed) of α, β and ρ
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Analysis

• As the number of observations increases, the empirical bias and MSE
decrease to 0.

• The estimation from the �rst model is always more e�cient than the
second model (A0 = 0).

• For small ρ, the added value of the new modelling is signi�cant.

• As ρ tends to 1, results in terms of MSE and Bias become similar for
both models.
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Context

A repairable system is observed with the following assumptions on the history
of the process:

• The ageing and the maintenance e�ciency are consistent with the
WARA∞ model.

• Su�cient maintenances have occurred in the past of the process so that
the system is assumed to be in its stationary regime.

• Parameters of the model are assumed to be known.

−→ A planned preventive maintenance (PM) policy is established on the
system for maintenance cost reduction.
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Assumptions

• After a maintenance (corrective or preventive) has restored the system, a
new PM is scheduled after a duration a.

• If a failure is observed before a duration a, a corrective maintenance is
carried out with cost Cc .

• Otherwise a PM is carried out with cost Cp (Cp < Cc).

• The PM e�ciency and the CM e�ciency are identical: ARA∞ with same
parameter ρ.

−→ Multiple strategies on the choice of the "age-based" duration a have been
investigated.
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First policy: Age-dependent policy

−→ The duration a is constant during the whole process.

−→ The renewal aspects of the WARA∞ model ensure that this strategy
makes sense and that the long-run average cost per unit of time for an in�nite
horizon is �nite.

C(a) = lim
t→∞

Ca(t)

t
<∞

−→ Two choices for a have been studied:

• The optimal age a∗ minimizing the cost function C(a) is obtained by
Monte Carlo simulations.

• As the process has similarities with a Renewal Process with generic
distribution X∞, it is possible to approach the optimal solution by
optimizing the classical age-based maintenance strategy and to obtain an
age â.

â = arg min
a

Cp + (Cc − Cp)(1− RX∞(a))∫ a

0
RX∞(u)du

(1)
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Evolution of the cost for a static policy

Figure: α = 1, β = 4.5,Cc = 10Cp
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Second policy: Dynamic policy

−→ The duration a is adaptative and depends on the past of maintenance
process.
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Dynamic policy (II)

−→ At the beginning, the initial age follows the limiting distribution A∞.

−→ Given the initial age u, the age after the ith maintenance is

Ai (u) = (1− ρ)iu +
i∑

j=1

(1− ρ)i−j+1xj

−→ The distribution of the next inter-failure time can be computed.

RZi+1
(z) = −

∫ ∞
0

e−α(Ai (u)+z)
β

e−αAi (u)
β

dRA∞(u)

−→ The optimal PM should be carried out after a duration a∗i+1.

a
∗
i+1 = arg min

a

Cp + (Cc − Cp)(1− RZi+1
(a))∫ a

0
RZi+1

(u)du
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Third policy: Failure limit policy

−→ After a maintenance (corrective or preventive) has restored the system, a
new PM is scheduled when the virtual age of the system exceeds a threshold A.

−→ "Virtual age limit" policy.
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Comparing the costs

Table: Optimal maintenance strategies (α = 1,Cc = 10Cp)

β ρ Static age Failure limit Variant I age Dynamic no PM

1.5 0.2 17.72 0.18 17.69 20.81 0.84 20.76 22.01
1.5 0.5 12.30 0.26 12.28 13.51 0.62 13.11 15.68
1.5 0.8 9.71 0.33 9.71 9.97 0.48 9.72 12.74

3 0.2 15.50 0.09 15.48 25.00 0.23 23.64 40.70
3 0.5 7.54 0.20 7.54 8.02 0.26 7.62 20.72
3 0.8 4.92 0.30 4.92 4.92 0.30 4.92 13.90

4.5 0.2 12.51 0.10 12.51 16.51 0.15 16.10 46.87
4.5 0.5 5.49 0.23 5.48 5.51 0.22 5.49 21.39
4.5 0.8 3.46 0.37 3.46 3.49 0.34 3.46 13.68
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Analysis

• The failure limit (virtual age limit) policy (III) is the most e�cient.

• The age-dependent policy (I) is almost as powerful.

• In practice, the age-dependent policy seems simpler to implement than
the failure limit policy.

• The dynamic policy (II) is locally optimal, but is outperformed by the
previous static policies.

• The approximation of the age-dependent policy (I') o�ers decent results.

• As this approximation does not take into account the dependency
between consecutive inter-failure times, its validity is poor with small ρ.
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Future work

• Add estimation procedures within the optimal PM strategy.

• Dissociate the maintenance e�ciencies.

• Take into account the downtime costs.

• Application to real dataset

• Develop goodness of �t procedures for the WARA∞ model.
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